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Abstract

Reinforcement learning algorithms are a powerful machine learning technique.
However, much of the work on these algorithms has been developed with regard to
discrete finite-state Markovian problems, which 1s too restrictive for many real-world
environments. Therefore, it 1s desirable to extend these methods to high dimensional
continuous state-spaces, which requires the use of function approximation to gener-
alise the information learnt by the system. In this report, the use of back-propagation
neural networks (Rumelhart, Hinton and Williams 1986) is considered in this context.

We consider a number of different algorithms based around Q-Learning (Watkins
1989) combined with the Temporal Difference algorithm (Sutton 1988), including a
new algorithm (Modified Connectionist Q-Learning), and Q(A) (Peng and Williams
1994). In addition, we present algorithms for applying these updates on-line during
trials, unlike backward replay used by Lin (1993) that requires waiting until the end
of each trial before updating can occur. On-line updating is found to be more robust
to the choice of training parameters than backward replay, and also enables the algo-
rithms to be used in continuously operating systems where no end of trial conditions
occur.

We compare the performance of these algorithms on a realistic robot navigation
problem, where a simulated mobile robot 1s trained to guide itself to a goal position
in the presence of obstacles. The robot must rely on limited sensory feedback from
its surroundings, and make decisions that can be generalised to arbitrary layouts of
obstacles.

These simulations show that on-line learning algorithms are less sensitive to the
choice of training parameters than backward replay, and that the alternative update
rules of MCQ-L and Q(A) are more robust than standard Q-learning updates.
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1 Introduction

Much of the work done in the reinforcement learning literature uses discrete state-spaces,
with low dimensional input-spaces. This is because current reinforcement learning algo-
rithms require extensive repeated searches of the state-space in order to propagate infor-
mation about the payoffs available, and so smaller state-spaces can be examined more
easily. Also, from a theoretical point of view, the only proofs of convergence available
for reinforcement learning algorithms are based on information being stored explicitly at
each state. However, it is desirable to extend reinforcement learning algorithms to work
efficiently in large state-spaces, which requires generalisation to be used to spread infor-
mation between similar states, and hence reduce the amount of information that must be
collected. This is especially important in the case of continuous state-spaces, where there
are effectively an infinite number of states, and the probability of ever returning to exactly
the same state ever again is negligible. In these cases, generalisation of experience is not
only desirable, but a necessity.

In this report, we examine the use of back-propagation neural networks to store the
information learnt by the Q-learning algorithm (Watkins 1989). Lin (1993) examined the
use of neural networks in this context, and provided algorithms for training based on
the idea of backward replay, which involves storing the state-action pairs visited by the
system until the end of a trial when the rewards are known, and then replaying them in
reverse order to train the network. In this report, however, we have examined the use
of algorithms that can be applied on-line, in the sense that the updates to the neural
networks are made at each time step during the trial, without the need to store any state-
action information. We show that in comparison with backward replay, on-line updates are
better at converging to optimal policies over a wider range of training parameter values.

We also examine other forms of update rule than the standard Q-learning algorithm,
introducing a new algorithm which we call Modified Connectionist Q-Learning, and ex-
tending Q(A) (Peng and Williams 1994) for use with continuous function approximators.
The algorithms are empirically tested on a mobile robot problem, where a simulated mobile
robot is trained to guide itself to a goal position in a 2D environment.

The remainder of this report is organised as follows: section 2 introduces the basics
of reinforcement learning and Q-learning, section 3 discusses connectionist Q-learning
and introduces the alternative update rules, and section 4 explains the on-line updating
algorithm. Sections 5 and 6 present the results and discussions of the experiments on the
robot problem, and finally section 7 gives the conclusions.

2 Reinforcement Learning

In reinforcement learning problems, a scalar value called a payoffis received by the control
system for transitions from one state to another. The aim of the system is to find a control
policy which maximises the expected future discounted sum of payoffs received, known as
the return.

The value function is a prediction of the return available from each state,

Vi(xt) FE{i’Yer-k} (1)
k=0

where r; is the payoff received for the transition from state vector x; to x;41 and v is the
discount factor (0 < < 1). Note that V (x;) therefore represents the discounted sum of
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payoffs received from time step ¢ onwards, and that this sum will depend on the sequence
of actions taken (the policy). The control system is required to find the policy which
maximises V' (x) in each state.

2.1 Q-Learning

In @Q-learning (Watkins 1989) the idea is to learn Q-function, which is a prediction of the
return associated with each action @ € A in each state. This prediction can be updated
with respect to the predicted return of the next state visited,

Q(xtya1) = 1 + 7V (X141) (2)

As the overall aim of the system is to maximise the payoffs received, the current estimate
of V(x¢) of a state is given by max,eca Q(x¢, @), so equation 2 becomes,

Q(x¢, az) < 1o + ’YT@}Q(XHM a) (3)

This is the one-step Q-learning update equation, which has been shown to converge for
finite-state Markovian problems when a lookup table is used to store the values of the
Q-function (Watkins 1989). Once the Q-function has converged, the optimal policy is to
take the action in each state with the highest predicted return. This is called the greedy
policy.

2.2 Temporal Difference Learning

Equation 3 is an update based on the temporal difference (Sutton 1988) between the
current and next prediction of return. However, the next prediction will change when
(2141 is updated, which implies that ); should be adjusted to take this into account. As a
general rule, therefore, each new temporal difference will effect not just the last prediction,
but all previous predictions. This results in the Temporal Difference learning algorithm
which can be applied to speed up convergence of sequential prediction tasks.

In fact, Sutton introduces an entire family of algorithms called TD(XA), where 0 < A <1
is a weighting on the relevance of recent temporal differences to earlier predictions. He
suggests that using lower values of A reduces the variance of the predictions seen by each
state. It has been shown by Dayan (1992) that TD(A) converges for finite-state Markovian
problems, but no proof exists for continuous systems.

2.3 Exploration

The reason for taking exploratory actions is that it is not possible for the Q-functions to
learn if the action with the highest (Q(xy, a¢) is chosen at all times, as, during training,
other actions with lower predicted payoffs may in fact be better. The method used to
select actions has a direct effect on the rate at which the reinforcement learning algorithm
will converge to an optimal policy. Ideally, the system should only choose to perform a
non-greedy action if it lacks confidence in the current greedy prediction. Although various
methods have been suggested for use in discrete state-space systems (Thrun 1992), they
are not generally applicable to systems using continuous function approximators.



3 Connectionist Q-Learning

Learning the Q-function requires some method of storing the current predictions at each
state for each action, and updating them as new information is gathered. Storing a separate
value for each state-action pair quickly becomes impractical for problems with large state-
spaces, and for continuous state-spaces is simply not possible. Therefore, there is the
need to use some form of function approximation which generalises predictions between
states, and thus provides predictions even in situations that have never been experienced
before. Neural networks, or Multi-Layer Perceptrons, provide such a continuous function
approximation technique, and have the advantage of scaling well to large input and state-
spaces (unlike, for instance, CMACs (Albus 1981) or Radial Basis Functions).

In order to represent the Q-function using neural networks, either a single network with
|A| outputs is required, or |A| separate networks, each with a single output. Following
Lin (1992), we chose to represent the Q-function using one neural network for each action,
which avoids the hidden nodes receiving conflicting error signals from different outputs.
However, the on-line algorithms presented in section 4 can be applied to either architecture.

Lin (1992) used the one-step Q-learning equation 3 to calculate the error in @;! and
update the neural network weights w; according to,

Aw, =1 |r + ’Yglgj(@tﬂ — Q| VuQy (4)

where 7 is the learning constant and V,,Q; is a vector of the output gradients dQ;/dw;
calculated by back-propagation.

3.1 Combining Q-Learning and Temporal Difference Learning

In order to speed up training, Watkins (1989) suggests combining Q-learning with TD-
learning (section 2.2). In this formulation, the current update error is used to adjust not
only the current estimate of (J;, but also that of previous states, by keeping a weighted
sum of earlier error gradients,

t
Awy =1 |rs + 'YTeaj(QHl - Qt] Z(/\’Y)t_kvak (5)
k=0

where A weights the relevance of the current error on earlier Q-value predictions. The
one-step Q-learning equation is therefore a special instance of this equation where A = 0.

Lin (1993) reports that using this form of update for connectionist Q-learning with
A > 0 results in faster convergence than the one-step Q-learning algorithm. However, he
applies equation 5 using the following algorithm,?

Aw; = n(Q} — Q1) VuQ: (6)
where,
Qi=ri+v[1-2N) TEaAXQH_l + AQi41 (7)

From equation 7 it can be seen that each @} depends recursively on future Q} values, which
means that updating can only occur at the end of each trial. Until then, all state-action

'In order to clarify the equations, @ is used as a notational shorthand for Q(x¢, ar).

>This is also the algorithm used by Thrun in his work on connectionist Q-learning e.g. (Thrun 1994).
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pairs must be stored, and then presented in a temporally backward order to propagate the
prediction errors correctly. This is called backward replay.

In section 4 we present algorithms to implement equation 5 directly for on-line updates,
and so remove the requirement to wait until the end of each trial. This removes the
necessity to store state-action pairs, or even to have an end of trial condition, as each
temporal difference error is used immediately. As the experiments show, this also results
in less sensitivity to the learning parameters for the system to converge.

An important point about equation 5 is that it is not a true TD-learning algorithm
unless the greedy policy is followed, i.e. the temporal difference errors will not add up
correctly,

o] o]

Z ’Yk [rt+k +ymax Qsyre1 — Qt+k] 7A Z ’ka‘t-l—k - Qy (8)

k=0 a€A k=0
unless the action corresponding to maxg,eca Q(x¢, a;) is performed at every time step.
Watkins recognised this, and suggested setting A = 0 whenever non-greedy actions are
performed (as is necessary for exploration; see section 2.3). This is sometimes ignored,
and a fixed A used, but experiments have shown that this leads to a more unreliable train-
ing method than those studied here. It is worth noting, however, that Lin’s backward
replay equations (6, 7) with A fixed are in fact an implementation of Q(A) (section 3.3),
and not of equation 5 with fixed A.

3.2 Modified Connectionist Q-Learning

The question is whether max,c4 Q(x, a) really provides the best estimate of the return
of the state x. In the early stages of learning, the Q-function values of actions that have
not been explored is likely to be completely wrong, and even in the latter stages, the
maximum value is more likely to be an over-estimation of the true return available (as
argued in Thrun and Schwartz (1993)). Further, the update rule for Q-learning combined
with temporal difference methods requires A to be zeroed on every step that a non-greedy
action is taken. As from the above arguments the greedy action could in fact be incorrect
(especially in the early stages of learning), zeroing the effect of subsequent predictions
on those prior to a non-greedy action is likely to be more of a hindrance than a help
in converging on the required predictions. Furthermore, as the system converges to a
solution, greedy actions will be used more to exploit the policy learnt by the system, so
the greedy returns will be seen anyway. Therefore, we introduce an alternative update
algorithm based more strongly on TD-learning, called Modified Connectionist Q-Learning
(MCQ-L).?

Our proposed update rule is,

t

Awy = n[ri +7Qi1 — Q4] Z(’Y/\)t_kvak (9)
k=0

This differs from normal Q-learning in the use of the Q41 associated with the action
selected, rather than the greedy max,ca (Q¢4+1 used in Q-learning. This ensures that the
temporal difference errors will add up correctly, regardless of whether greedy actions are
taken or not, without the need to zero A. If greedy actions are taken, however, then this

*Though Rich Sutton suggests SARSA, as you need to know State-Action-Reward-State-Action before
performing an update.



equation is exactly equivalent to standard Q-learning, and so, in the limit when exploration
has ceased and the greedy policy is being followed, the updates will be the same as for
standard Q-learning (equation 5).

MCQ-L therefore samples from the distribution of possible future returns given the
current exploration policy, rather than just the greedy policy as for normal Q-learning.
Therefore, the Q-function will converge to,

Qxt,at) «+ F {rt +7 ) Plalxen)Q (41, a)} (10)
acA

which is the expected return given the probabilities, P(a|x;), of actions being selected.

Consequently, at any point during training, the Q-function should give an estimation of

the expected returns that are available for the current exploration policy. As it is normal

to reduce the amount of exploration as training proceeds, eventually the greedy action

will be taken at each step, and so the Q-function will converge to the optimal values.

3.3 Q)

Peng and Williams (1994) presented another method of combining Q-learning and TD-
learning, called Q(A). This is based on performing a normal one-step Q-learning update
to improve the current prediction )¢, and then using the temporal differences between
successive greedy predictions to update it from there on, regardless of whether greedy
actions are performed or not. This means that A does not need to be zeroed, but requires
that two different error terms to be calculated at each step. Peng presented the algorithm
for discrete state-space systems, whilst here we extend it for use with continuous function
approximators.
At each time step, an update is made according to the one-step Q-learning equation 4,
and then a second update is made using,
i—1
Aw; =1 [rt + v max (ry; — max Qt] Z('y/\)t_kaQk (11)
a€A a€A o
Note the summation is only up to step ¢ — 1. As we are dealing with a continuous state-
space system, both updates affect the same weights and so result in an overall update

of,

Aw, =1 ([f‘t + ¥ max Qi1 — Qt] V@i + [rt + max Qi1 — max Qt] et) (12)

This results in a slightly altered and less efficient on-line update algorithm than for either
standard Q-learning or MCQ-L (section 4).

4 On-line Learning

In this section we present the temporal difference update algorithms required to apply the
connectionist learning methods at each time step, and hence lose the requirement to store
all state-action pairs until the end of each trial.

The basic algorithm for applying TD-learning techniques to train neural networks can
be found in Sutton (1989). Each weight in the network maintains an eligibility trace,

t

et = Z(/\’Y)t_kvaHk = V,Qt+ Ayei_1 (13)
k=0



Reset all eligibilities, ey = 0

t=20

Select action, a;

Ift >0,

Wy = Wiy + 0(ri—1 +7Qr — Qi—1)er—1

Calculate V,,(0; w.r.t. selected action a; only.

e =Vy,Qi+vre

Perform action a, and receive payoff r;

If trial has not ended, ¢ + ¢t 4+ 1 and go to step 3.

=W N

0 =~ O Ut

Figure 1: On-line connectionist update algorithm. The update in stage 5 is shown for
Modified Connectionist Q-Learning.

1. Reset all eligibilities, eg = 0.

2. t=0.

3. Select action, a;.

4. Ift >0,
wy = Wi_i + 7 ([re—1 + ymaxees Qr — Qi—1] VuQi—1+
[ri—1 + v max,ea Q1 — maxges Qi—1)€i—1)

5. e =vAe_1 + VuQi—1]

6. Calculate V,,(J; w.r.t. selected action a; only.

7. Perform action ay, and receive payoff r;.

8. If trial has not ended, t + ¢t + 1 and go to step 3.

Figure 2: On-line connectionist update algorithm for Q(A).

to keep track of the weighted sum of previous error gradients. Sutton presented the
algorithm for the general case where a multiple output network has different errors in
each of its outputs, and hence there is the need to maintain one eligibility trace per
network output at each weight. However, in the Q-learning framework there is only a
single temporal difference error at each time step, which is used to update the Q-values of
all actions in A, and hence results in the fact that only a single eligibility is required for
each weight (see appendix A).

The important point to note is that V,,Q; (the back-propagated output gradient) is
only calculated with respect to the output producing the Q-function value for the selected
action a;. Hence, if the Q-function is being represented by |A| separate single output
networks, then V,@; is zero for all weights in networks other than the one associated
with action a;, and so the eligibilities for the these networks are just updated according
to,

e = y\e;_q (14)



OBSTACLE GOAL

Figure 3: What the robot knows about its surroundings

The full on-line algorithm is shown in Fig. 1. It involves back-propagating to compute
the output gradients V,,(J; for the action chosen, and hence updating the weight eligibili-
ties, before the action is actually performed. At the next time step, all of the weights are
updated according to the temporal difference error multiplied by their eligibilities. There-
fore, the only storage requirements are for the neural network weights and eligibilities, and
the last Q-function value ¢); and payoff ry.

Q(A) updating is slightly different, and translates into the on-line update sequence
shown in Fig. 2. Note the change in order of steps 6 and 7 which requires that the network
output gradients, V, ()¢, are stored between steps. The algorithm is therefore slightly
more computationally expensive than standard Q-learning and MCQ-L, and also requires
the storage of the gradients V,,(J; as well as the network weights and eligibilities.

5 The Robot Problem

In order to test the algorithms discussed, a realistic mobile robot problem was considered.
The robot must find its way to a goal position in a 2D environment whilst avoiding ob-
stacles, but only receives payoffs at the end of each trial, when the outcome is known.
The only information available to it during a trial are sensor readings, and information it
has learnt from previous trials. In order to ensure the control policy learnt is as generally
applicable as possible, the robot is trained on a sequence of randomly generated environ-
ments, with each used for only a single trial. Effectively, this provided forced exploration
of new environments and situations, and so provided a more robust robot control policy
than could be achieved on a fixed environment.

5.1 The Robot Environment

The robot is simulated with five range finding inputs which give it accurate distance
measurements to obstructions, which are spaced across the robots forward arc from —30°



to +30° at 15° intervals (see Fig. 3). It also always knows the distance and angle to the
goal relative to its current position and facing.

The world the robot occupies is a square room, with randomly placed convex polygonal
obstacles in it. The robot starts at a random position with a random orientation, and has
to reach the goal, which is also at a random position.

The robot moves by selecting from a discrete set of actions (see section 5.2). It does
this until an action results in a collision with an obstacle, arriving at the goal, or a time-
out (the robot is allowed only a limited number of steps in which to reach the goal). The
trial then ends and the robot receives a payoff based on its final position as described in
section 5.2. The layout of the room is then randomised, and the robot starts a new trial.
Consequently, the only information that the robot has as to the quality of its actions is
the final payoff it is given, and what it has learnt from previous trials.

5.2 Experimental Details

In the following results, we compare the effects of applying the 3 different update rules on
the robot learning task described in section 5.1;

e Standard Q-learning (equation 5) with A = 0 whenever a non-greedy action is per-
formed.

e Q(A) (equation 12).
e Modified Q-learning (equation 9).

In addition, we compare the effect of applying these updates using both backward replay
(section 3.1) and the on-line algorithm (section 4).

The simulated robot was trained with 6 actions available to it: turn left 15°, turn right
15°, or keep the same heading, and either move forward a fixed distance d, or remain on
the same spot. This meant it had one redundant action — namely not moving or changing
heading at all — that was never useful in achieving its objective.

Instead of receiving payoffs r; at each time step, the robot only received a payoff at
the end of each trial. The final payoff received depended on how the trial concluded:

Goal If the robot moved within a small fixed radius of the goal position, a payoff given
was 1.

Crash The robot received a payoff based on its distance from the goal when it crashed
i.e.
Tfinal = 0.5 exp(_ngoal/lroom)

where [, was the length of one wall of the square room.

Safe If the trial timed-out (in the results presented in this section, this was after 200
steps), the robot received the same payoff as for a crash, but with a +0.3 bonus for
not crashing.

It should be noted that the payoff for crashing was chosen in a fairly arbitrary way simply
to give a higher payoff for ending up nearer to the goal, and a maximum payoff of only
0.5.

The discount factor, v was set to 0.99, which gives a higher weighting to actions that
lead to the goal in the fewest steps.
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Training method | Successful robots | Updates taken | Trial length
(from 36) (millions) (steps)
Standard 1 6.0 75.1
Q(N) 12 3.8 51.6
MCQ-L 14 3.0 53.3

Table 1: Summary of successful robots (those averaging > 0.95 average payoff over the
last 10,000 training trials), from 36 different A and 7 combinations trained using backward
replay. Columns show number of updates made over the trials, and the average number
of steps required to find the goal by the end.

The Q-function was represented by 6 neural networks, one for each available action.
Each network had 26 inputs, 3 hidden nodes, and a single output, and used sigmoidal
activation functions of the form f(o) = 1/(1 + e~7) which restricted the output of the
networks to between 0 and 1. The 26 inputs were due to spreading the 7 real valued sensor
states across several input nodes each (3 for each of the 5 ranges, 5 for the distance to
goal, and 6 for the angle to the goal), using a form of coarse coding. For example, a range
value was spread across 3 input nodes as if it were activating 3 single-input sigmoidal
units, each with a different bias value. These were chosen so that as the range decreased,
the inputs increased one after the other until at very close range they were all ‘on’. This
restricted the individual input values to a range of 0 to 1.

In this work the simple Boltzmann probability distribution was used to provide prob-
abilities for selecting actions,

eQ(Xtvat)/T
T aen Q0T

P(at|xt) = (15)
where T adjusts the randomness of selection. This means that actions with higher Q-
values have greater probability of being chosen, but other actions may be chosen instead.
As the approximation of the Q-function improves, and the amount of exploration required
goes down, the value of T is reduced until the greedy action has almost probability 1 of

being selected at each step. In the results presented, T was reduced linearly between a
value of 0.05 and 0.01 over 20,000 trials, after which it was fixed at 0.01.

5.3 Results

There are several heuristic parameters that must be set during training; the values used
for the discount factor v and the exploration value T have been described above. These
were chosen after a small amount of experimentation, but no attempt was made to find
optimal values (e.g. a faster reduction in 7" can speed up convergence to a solution). This
leaves the training rate n and the TD parameter A, which were found to have a significant
effect on the ability of the neural networks to learn, and the quality of the solutions arrived
at.

The graphs in Fig. 4 show the variation in average payoffs received by robots after being
trained on 50,000 randomly generated rooms using Lin’s backward replay algorithm. The
graphs in Fig. 5 show the results when on-line updates (section 4) are used instead. The
contour plots are constructed from results obtained from » = 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 and
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Figure 4: Left: Contour plots showing how the final payoff after 50,000 trials varies for
each of the three update rules applied using backward replay for different values of n and
A. Right: Sample training curves taken for each update rule, corresponding to the value
of  and A marked by a + on each contour plot. The dotted line is the normalised average
number of steps taken in each trial (maximum trial length was 200 steps).
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Standard Q-Learning
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Figure 5: Left: Contour plots showing how the final payoff after 50,000 trials varies for
each of the three update rules applied on-line for different values of 1 and A. Right: Sample
training curves taken for each update rule, corresponding to the value of n and A marked
by a + on each contour plot. The dotted line is the normalised average number of steps
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taken in each trial (maximum trial length was 200 steps).
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Training method | Successful robots | Updates taken | Trial length
(from 36) (millions) (steps)
Standard 18 5.1 57.8
Q(N) 22 4.0 52.6
MCQ-L 24 2.4 49.6

Table 2: Summary of successful robots (those averaging > 0.95 average payoff over the
last 10,000 training trials), from 36 different A and 7 combinations using on-line updates.
Columns show number of updates made over the trials, and the average number of steps
required to find the goal by the end.

MCQ-L 1 Rewards versus Updates
4 SRS — ; T
3.5/ s T 0ar |
- ---0.96 0.8 Rt
3l S 0.95] ' i
_ N 'E /
[ : : g ’
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1 0.2 Q)
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. . . \\\/ 0 .
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2 3 4
Updates (millions)

Figure 6: Left: The contour plot shows the payoff levels achieved by MCQ-L trained robots
after 1.5 million updates. Right: The same three example graphs from Fig. 5, this time
plotted against updates rather than trials.

A =10.0,0.25,0.5,0.75, 0.85, 1.0 for each of the three update rules used, and show the final
payofl averaged over the last 10,000 trials. The graphs on the right show typical learning
curves for robots that learn to reach the goal consistently. It is worth remembering that
the exploration factor T has reached its minimum value of 0.01 at 20,000 trials.

We see that the performance of the robots trained using backward replay is very
sensitive to the choice of learning parameters n and A, with standard Q-learning only
producing one truly successful robot. The results for ‘successful’ robots (those averaging
> 0.95 payoff across the final 10,000 trials) are summarised in table 1, where it can be
seen that MCQ-L and Q(A) perform far better than standard Q-learning.

In contrast, the contour plots for on-line updating (Fig. 5) show far less sensitivity to
the choice of learning parameters. As can be seen from table 2, the number and quality of
the successful robots is greatly increased, with the best results for MCQ-L trained robots
using on-line updates.

When comparing the performance of the on-line trained robots, the average payoffs
received by the robots do not show the whole picture. The number of updates taken in
50,000 trials varies considerably between the different training methods. Fig. 6 shows the
same graphs as for Fig. 5, but with the x-axis scale in terms of updates rather than number
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Maximum trial | Exploration | Average | Goal | Crash Safe
length (steps) value T payoff (timed out)
100 none 0.984 962 5 23

0.01 0.981 960 9 21
200 none 0.991 980 5 15
0.01 0.993 989 9 2
500 none 0.991 980 5 15
0.01 0.993 990 9 1

Table 3: MCQ-L trained robot tested on 1000 randomly generated rooms, with varying
maximum trial lengths, and with and without exploration.
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Figure 7: Left: A trained robot in a typical training environment. Right: The same robot
in a novel environment consisting of circular objects in a room 2.5 times larger than it has
seen during training.

of trials. As can be seen, the MCQ-L trained robots have converged to a solution in well
under a million updates, compared to over 2 million for Q(A) and 4 million for standard
Q-learning.

To put this in perspective, the contour map in Fig. 6 represents the average payoffs
received by the MCQ-L trained robots after 1.5 million applications of the update rule;
the graphs for the other two methods are not shown as they are virtually blank i.e. no
standard Q-learning taught robots, and only 3 combinations of 7 and A for Q(A), have led
to a robot which averages a payoff greater than 0.95 within 1.5 million updates.

5.4 Best Control Policy

So, what is the best robot controller that can be achieved with connectionist reinforcement
methods? Table 3 summarises the results for a robot trained using on-line MCQ-L with
a training rate n of 2.0, and A equal to 0.25, on 50,000 randomly generated rooms. With
only 100 steps available to reach the goal position, the robot fails 2% of the time due to
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time-outs. The number of time-outs drops to 1.5% if 200 step trials are allowed, with no
real improvement for allowing increased numbers of steps. Note that the system performs
better with a small amount of exploration, even when fully trained. This is because the
limited sensory information available to the robot makes the problem non-Markovian, so in
some situations it is not clear-cut which action to take. If the robot makes a deterministic
decision, which later leads it back to the same state, it will get caught in a loop. A little
exploration, however, can help the robot out of such situations by giving a probability of
performing a different action.

Fig. 7 shows the trajectory taken by the robot in on a typical randomly generated
training environment, and in a novel ‘circle world’ environment for which it received no
additional training, demonstrating the generality of its control policy.

6 Discussion of Results

6.1 Heuristic Parameters

The contour plots of Fig. 4 and 5 show how the choice of training rate » and TD-
learning rate A can effect the subsequent success or failure of the system to converge to a
successful solution. Some values simply result in very slow convergence times; others in
complete failure to learn a successful policy. This is because of the generalisation property
of neural networks, which means that information can be ‘forgotten’ as well as learnt. If
the parameters chosen during training are unsuitable, the robot will forget information as
fast as it learns it, and so be unable to converge on a successful solution. This is why no
proofs yet exist regarding the convergence of Q-learning or TD-algorithms in connectionist
systems.

Consequently, it is desirable to use training methods that are less sensitive to the choice
of training parameters, to avoid having to perform repeated experiments to establish which
values work best. The results presented in the last section suggest that on-line updates
and the use of MCQ-L or Q(A), as opposed to standard Q-learning updates, help reduce
this sensitivity.

The value of v used was fixed throughout the experiments presented at 0.99. With no
discounting, the robot can arrive at solutions that reap high final payoffs, but do not use
efficient trajectories (and hence the robot is often timed-out). To illustrate this, Fig. 8
shows the training curves for two robots using MCQ-L with and without discounting. As
can be seen, the undiscounted robot does considerably worse, especially in the average
number of steps taken per trial, despite the fact that there is only a 1% difference in the
updates being made at each time step.

Finally, some tests have shown that the convergence of the neural networks relies heav-
ily on the exploration used at each stage of learning. If it is too low early on then the
robot cannot find improved policies, whilst if it is too high at a later stage then the ran-
domness interferes with the fine tuning required to have reliable policies that successfully
lead to the goal. When using a Boltzmann distribution, therefore, the rate of convergence
is directly linked with the rate of reduction of T.

Clearly therefore, the choice of values for the heuristic parameters used in connectionist
Q-learning is critical in order to guarantee successful convergence. Thrun and Schwartz
(1993) provided limits for v based on the trial length and number of actions available to
a system, assuming one-step Q-learning is being used, but more general results are as yet
unavailable.

16



v 1.0

1 1
0.8r 0.8r
° °
g g
eO.Gf eO.Gf
(0] (0]
g g
0041 5041
> >
< <
0.2 0.2
0 - ' ; ; 0 - ' ; ;
0 10 20 30 40 50 0 10 20 30 40 50
Trials (thousands) Trials (thousands)

Figure 8: Graphs showing the effect of the discount factor y. Both robots were trained
using MCQ-L with n = 1.0 and A = 0.5. The dotted lines show the normalised number of
steps per trial.

6.2 On-line v Backward Replay

The results of the tests for using on-line updating compared to backward replay are inter-
esting; on-line updating consistently performs much more successfully over a wider range
of training parameters for all 3 update rules. This is quite surprising, as backward replay
has the benefit of having all state-action pairs stored for the trial, and being updated
using supervised learning based on the final reward. However, it would seem that on-line
learning has the advantage that the eligibilities act in a similar way to a momentum term,*
providing updates that reduce the error to zero, instead of converging asymptotically in
proportion to the mean squared error. Providing a momentum term for the updates per-
formed during backward replay could help achieve the same effect (as it does in normal
supervised learning tasks), but also introduces another heuristic parameter that would
need setting during training.

6.3 Comparison of Update Rules

The results show the relative performance of the 3 different forms of update rule. It is
important to remember that all 3 of these update rules are exactly equivalent when purely
greedy actions are taken during a trial. The difference in the updates occurs only when
exploratory actions are taken.

Using standard Q-learning with A set to zero for non-policy actions, weight eligibilities
are only allowed to build up when the robot takes a sequence of greedy policy actions;
they are zeroed when an exploratory action is taken. This stops the results of exploratory
actions from being ‘seen’ by earlier actions, but also mean that states see a continual over-
estimation of the payoffs available, as they are always trained on the maximum predicted
Q-value at each step (Thrun and Schwartz 1993). However, in a connectionist system,
generalisation occurs, which means that the effects of bad exploratory actions will be seen
by nearby states even if A is set to zero to try to prevent this, so this is of limited value,
and simply results in the information learnt by good exploratory actions being used less

*Or an integral term in a PID controller.
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effectively. The overall effect is that standard Q-learning converges less quickly, and over
a smaller range of training parameters (especially noticable with backward replay) than
MCQ-L or Q(A) type updates.

Q(A) is in effect a combination of standard Q-learning and MCQ-L. However, updating
the last greedy prediction based on the next prediction, despite the fact that the corre-
sponding greedy action was not performed, is a confusing concept, but appears to work
well in practice, although it is not clear what the predictions made by intermediate Q-
functions actually represent. The rule is slightly harder to implement than either standard
Q-learning or MCQ-L, and in these experiments appears to offer no advantage over using
the MCQ-L type of updates.

With Modified Connectionist Q-learning, the results of exploratory actions are seen
by earlier states, which therefore learn the expected payoff available in each state given
the current level of exploration. Effectively, the risk of a particular course of actions is
built in, as if slight exploration can lead to disaster, then the predicted payoffs for that
sequence of actions will be correspondingly lower, unlike for standard Q-learning, which
aims only to learn the deterministic greedy policy.

7 Conclusions

In this report, we have presented methods for on-line updating using neural networks
for reinforcement learning. These methods have been demonstrated on a realistic mobile
robot problem, and have shown that on-line learning is in fact a more efficient method
of performing updates than backward replay methods (Lin 1992), in terms both of stor-
age requirements and sensitivity to training parameters. On-line learning also has the
advantage that it could be used in continuously operating systems where no end of trial
conditions occur.

In addition to this, several different update rules have been considered, including a new
form (MCQ-L) based more strongly on TD-learning than the normal Q-learning equation.
This has been shown to converge to solutions in considerably fewer updates than standard
QQ-learning or the Q(A) update rule, and to be more robust to the choice of training
parameters. In comparison with Q(A), MCQ-L’s performance improvement is not so clear
cut, but still has the advantage of a computationally simpler update rule requiring less
storage, as well as a clearly defined target Q-function for any given policy.

Of course, the results as a comparison of different Q-learning update rules are far from
conclusive, and further comparative studies need to be made. However, currently work is
being carried out to compare the performance of the different update rules on a discrete
state-space problem, where preliminary results support the fact that MCQ-L and Q(A)
updates lead to faster convergence than standard Q-learning (and far faster convergence
than simple one-step Q-learning).
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A Calculating Eligibility Traces

For completeness, the calculation of V,,(Q0; and hence the eligibility traces is given here.
We define a neural network as being a collection of interconnected units arranged in

layers, which we label ¢, j, k... from the output layer to the input layer. A weight on a

connection from layer ¢ to j is labelled w;;. Fach unit performs the following function,

o = [(oi) (16)
o, = ZwijOj (17)

where o; is the output from layer ¢ and f(.) is a sigmoid function.
The output gradient V,,Q); is defined w.r.t. the output layer weights as,

Jdo;

dw;;

= f'(o:)o (18)
where f'(.) is the first differential of the sigmoid function. Therefore, for the first hidden
layer weights, the gradient is simply,

Jdo;
dwjp,

= flai)wi;f'(a;)ox (19)

These values are added to the current eligibilities. Generally, there would be one output
gradient for each output ¢, and hence ¢ eligibilities would be required for each weight,
so that when each output’s temporal difference error, F;, arrived, the weights could be
updated according to,

ijk — Z Eleék (20)

where eék is the eligibility on weight w;; which corresponds to output 7. However, in
Q-learning, there is only a single temporal difference error which is calculated w.r.t. the
output which produced the current prediction ¢);. Hence only one output gradient is
calculated at each time step, and only one eligibility is required per weight.
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