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AbstractReinforcement learning algorithms are a powerful machine learning technique.However, much of the work on these algorithms has been developed with regard todiscrete �nite-state Markovian problems, which is too restrictive for many real-worldenvironments. Therefore, it is desirable to extend these methods to high dimensionalcontinuous state-spaces, which requires the use of function approximation to gener-alise the information learnt by the system. In this report, the use of back-propagationneural networks (Rumelhart, Hinton and Williams 1986) is considered in this context.We consider a number of di�erent algorithms based around Q-Learning (Watkins1989) combined with the Temporal Di�erence algorithm (Sutton 1988), including anew algorithm (Modi�ed Connectionist Q-Learning), and Q(�) (Peng and Williams1994). In addition, we present algorithms for applying these updates on-line duringtrials, unlike backward replay used by Lin (1993) that requires waiting until the endof each trial before updating can occur. On-line updating is found to be more robustto the choice of training parameters than backward replay, and also enables the algo-rithms to be used in continuously operating systems where no end of trial conditionsoccur.We compare the performance of these algorithms on a realistic robot navigationproblem, where a simulated mobile robot is trained to guide itself to a goal positionin the presence of obstacles. The robot must rely on limited sensory feedback fromits surroundings, and make decisions that can be generalised to arbitrary layouts ofobstacles.These simulations show that on-line learning algorithms are less sensitive to thechoice of training parameters than backward replay, and that the alternative updaterules of MCQ-L and Q(�) are more robust than standard Q-learning updates.
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1 IntroductionMuch of the work done in the reinforcement learning literature uses discrete state-spaces,with low dimensional input-spaces. This is because current reinforcement learning algo-rithms require extensive repeated searches of the state-space in order to propagate infor-mation about the payo�s available, and so smaller state-spaces can be examined moreeasily. Also, from a theoretical point of view, the only proofs of convergence availablefor reinforcement learning algorithms are based on information being stored explicitly ateach state. However, it is desirable to extend reinforcement learning algorithms to worke�ciently in large state-spaces, which requires generalisation to be used to spread infor-mation between similar states, and hence reduce the amount of information that must becollected. This is especially important in the case of continuous state-spaces, where thereare e�ectively an in�nite number of states, and the probability of ever returning to exactlythe same state ever again is negligible. In these cases, generalisation of experience is notonly desirable, but a necessity.In this report, we examine the use of back-propagation neural networks to store theinformation learnt by the Q-learning algorithm (Watkins 1989). Lin (1993) examined theuse of neural networks in this context, and provided algorithms for training based onthe idea of backward replay, which involves storing the state-action pairs visited by thesystem until the end of a trial when the rewards are known, and then replaying them inreverse order to train the network. In this report, however, we have examined the useof algorithms that can be applied on-line, in the sense that the updates to the neuralnetworks are made at each time step during the trial, without the need to store any state-action information. We show that in comparison with backward replay, on-line updates arebetter at converging to optimal policies over a wider range of training parameter values.We also examine other forms of update rule than the standard Q-learning algorithm,introducing a new algorithm which we call Modi�ed Connectionist Q-Learning, and ex-tending Q(�) (Peng and Williams 1994) for use with continuous function approximators.The algorithms are empirically tested on a mobile robot problem, where a simulated mobilerobot is trained to guide itself to a goal position in a 2D environment.The remainder of this report is organised as follows: section 2 introduces the basicsof reinforcement learning and Q-learning, section 3 discusses connectionist Q-learningand introduces the alternative update rules, and section 4 explains the on-line updatingalgorithm. Sections 5 and 6 present the results and discussions of the experiments on therobot problem, and �nally section 7 gives the conclusions.2 Reinforcement LearningIn reinforcement learning problems, a scalar value called a payo� is received by the controlsystem for transitions from one state to another. The aim of the system is to �nd a controlpolicy which maximises the expected future discounted sum of payo�s received, known asthe return.The value function is a prediction of the return available from each state,V (xt) E ( 1Xk=0 krt+k) (1)where rt is the payo� received for the transition from state vector xt to xt+1 and  is thediscount factor (0 �  � 1). Note that V (xt) therefore represents the discounted sum of3



payo�s received from time step t onwards, and that this sum will depend on the sequenceof actions taken (the policy). The control system is required to �nd the policy whichmaximises V (xt) in each state.2.1 Q-LearningIn Q-learning (Watkins 1989) the idea is to learn Q-function, which is a prediction of thereturn associated with each action a 2 A in each state. This prediction can be updatedwith respect to the predicted return of the next state visited,Q(xt; at) rt + V (xt+1) (2)As the overall aim of the system is to maximise the payo�s received, the current estimateof V (xt) of a state is given by maxa2AQ(xt; a), so equation 2 becomes,Q(xt; at) rt + maxa2A Q(xt+1; a) (3)This is the one-step Q-learning update equation, which has been shown to converge for�nite-state Markovian problems when a lookup table is used to store the values of theQ-function (Watkins 1989). Once the Q-function has converged, the optimal policy is totake the action in each state with the highest predicted return. This is called the greedypolicy.2.2 Temporal Di�erence LearningEquation 3 is an update based on the temporal di�erence (Sutton 1988) between thecurrent and next prediction of return. However, the next prediction will change whenQt+1 is updated, which implies that Qt should be adjusted to take this into account. As ageneral rule, therefore, each new temporal di�erence will e�ect not just the last prediction,but all previous predictions. This results in the Temporal Di�erence learning algorithmwhich can be applied to speed up convergence of sequential prediction tasks.In fact, Sutton introduces an entire family of algorithms called TD(�), where 0 � � � 1is a weighting on the relevance of recent temporal di�erences to earlier predictions. Hesuggests that using lower values of � reduces the variance of the predictions seen by eachstate. It has been shown by Dayan (1992) that TD(�) converges for �nite-state Markovianproblems, but no proof exists for continuous systems.2.3 ExplorationThe reason for taking exploratory actions is that it is not possible for the Q-functions tolearn if the action with the highest Q(xt; at) is chosen at all times, as, during training,other actions with lower predicted payo�s may in fact be better. The method used toselect actions has a direct e�ect on the rate at which the reinforcement learning algorithmwill converge to an optimal policy. Ideally, the system should only choose to perform anon-greedy action if it lacks con�dence in the current greedy prediction. Although variousmethods have been suggested for use in discrete state-space systems (Thrun 1992), theyare not generally applicable to systems using continuous function approximators.4



3 Connectionist Q-LearningLearning the Q-function requires some method of storing the current predictions at eachstate for each action, and updating them as new information is gathered. Storing a separatevalue for each state-action pair quickly becomes impractical for problems with large state-spaces, and for continuous state-spaces is simply not possible. Therefore, there is theneed to use some form of function approximation which generalises predictions betweenstates, and thus provides predictions even in situations that have never been experiencedbefore. Neural networks, or Multi-Layer Perceptrons, provide such a continuous functionapproximation technique, and have the advantage of scaling well to large input and state-spaces (unlike, for instance, CMACs (Albus 1981) or Radial Basis Functions).In order to represent the Q-function using neural networks, either a single network withjAj outputs is required, or jAj separate networks, each with a single output. FollowingLin (1992), we chose to represent the Q-function using one neural network for each action,which avoids the hidden nodes receiving conicting error signals from di�erent outputs.However, the on-line algorithms presented in section 4 can be applied to either architecture.Lin (1992) used the one-step Q-learning equation 3 to calculate the error in Qt1 andupdate the neural network weights wt according to,�wt = � �rt + maxa2A Qt+1 � Qt�rwQt (4)where � is the learning constant and rwQt is a vector of the output gradients @Qt=@wtcalculated by back-propagation.3.1 Combining Q-Learning and Temporal Di�erence LearningIn order to speed up training, Watkins (1989) suggests combining Q-learning with TD-learning (section 2.2). In this formulation, the current update error is used to adjust notonly the current estimate of Qt, but also that of previous states, by keeping a weightedsum of earlier error gradients,�wt = � �rt + maxa2A Qt+1 � Qt� tXk=0(�)t�krwQk (5)where � weights the relevance of the current error on earlier Q-value predictions. Theone-step Q-learning equation is therefore a special instance of this equation where � = 0.Lin (1993) reports that using this form of update for connectionist Q-learning with� > 0 results in faster convergence than the one-step Q-learning algorithm. However, heapplies equation 5 using the following algorithm,2�wt = �(Q0t� Qt)rwQt (6)where, Q0t = rt +  �(1� �)maxa2A Qt+1 + �Q0t+1� (7)From equation 7 it can be seen that each Q0t depends recursively on future Q0t values, whichmeans that updating can only occur at the end of each trial. Until then, all state-action1In order to clarify the equations, Qt is used as a notational shorthand for Q(xt; at).2This is also the algorithm used by Thrun in his work on connectionist Q-learning e.g. (Thrun 1994).5



pairs must be stored, and then presented in a temporally backward order to propagate theprediction errors correctly. This is called backward replay.In section 4 we present algorithms to implement equation 5 directly for on-line updates,and so remove the requirement to wait until the end of each trial. This removes thenecessity to store state-action pairs, or even to have an end of trial condition, as eachtemporal di�erence error is used immediately. As the experiments show, this also resultsin less sensitivity to the learning parameters for the system to converge.An important point about equation 5 is that it is not a true TD-learning algorithmunless the greedy policy is followed, i.e. the temporal di�erence errors will not add upcorrectly, 1Xk=0 k �rt+k + maxa2A Qt+k+1 �Qt+k� 6= 1Xk=0 krt+k �Qt (8)unless the action corresponding to maxa2AQ(xt; at) is performed at every time step.Watkins recognised this, and suggested setting � = 0 whenever non-greedy actions areperformed (as is necessary for exploration; see section 2.3). This is sometimes ignored,and a �xed � used, but experiments have shown that this leads to a more unreliable train-ing method than those studied here. It is worth noting, however, that Lin's backwardreplay equations (6, 7) with � �xed are in fact an implementation of Q(�) (section 3.3),and not of equation 5 with �xed �.3.2 Modi�ed Connectionist Q-LearningThe question is whether maxa2AQ(x; a) really provides the best estimate of the returnof the state x. In the early stages of learning, the Q-function values of actions that havenot been explored is likely to be completely wrong, and even in the latter stages, themaximum value is more likely to be an over-estimation of the true return available (asargued in Thrun and Schwartz (1993)). Further, the update rule for Q-learning combinedwith temporal di�erence methods requires � to be zeroed on every step that a non-greedyaction is taken. As from the above arguments the greedy action could in fact be incorrect(especially in the early stages of learning), zeroing the e�ect of subsequent predictionson those prior to a non-greedy action is likely to be more of a hindrance than a helpin converging on the required predictions. Furthermore, as the system converges to asolution, greedy actions will be used more to exploit the policy learnt by the system, sothe greedy returns will be seen anyway. Therefore, we introduce an alternative updatealgorithm based more strongly on TD-learning, called Modi�ed Connectionist Q-Learning(MCQ-L).3Our proposed update rule is,�wt = � [rt + Qt+1 � Qt] tXk=0(�)t�krwQk (9)This di�ers from normal Q-learning in the use of the Qt+1 associated with the actionselected, rather than the greedy maxa2AQt+1 used in Q-learning. This ensures that thetemporal di�erence errors will add up correctly, regardless of whether greedy actions aretaken or not, without the need to zero �. If greedy actions are taken, however, then this3Though Rich Sutton suggests SARSA, as you need to know State-Action-Reward-State-Action beforeperforming an update. 6



equation is exactly equivalent to standard Q-learning, and so, in the limit when explorationhas ceased and the greedy policy is being followed, the updates will be the same as forstandard Q-learning (equation 5).MCQ-L therefore samples from the distribution of possible future returns given thecurrent exploration policy, rather than just the greedy policy as for normal Q-learning.Therefore, the Q-function will converge to,Q(xt; at) E (rt + Xa2AP (ajxt+1)Q(xt+1; a)) (10)which is the expected return given the probabilities, P (ajxt), of actions being selected.Consequently, at any point during training, the Q-function should give an estimation ofthe expected returns that are available for the current exploration policy. As it is normalto reduce the amount of exploration as training proceeds, eventually the greedy actionwill be taken at each step, and so the Q-function will converge to the optimal values.3.3 Q(�)Peng and Williams (1994) presented another method of combining Q-learning and TD-learning, called Q(�). This is based on performing a normal one-step Q-learning updateto improve the current prediction Qt, and then using the temporal di�erences betweensuccessive greedy predictions to update it from there on, regardless of whether greedyactions are performed or not. This means that � does not need to be zeroed, but requiresthat two di�erent error terms to be calculated at each step. Peng presented the algorithmfor discrete state-space systems, whilst here we extend it for use with continuous functionapproximators.At each time step, an update is made according to the one-step Q-learning equation 4,and then a second update is made using,�wt = � �rt + maxa2A Qt+1 �maxa2A Qt� t�1Xk=0(�)t�krwQk (11)Note the summation is only up to step t � 1. As we are dealing with a continuous state-space system, both updates a�ect the same weights and so result in an overall updateof, �wt = ���rt + maxa2A Qt+1 � Qt�rwQt + �rt + maxa2A Qt+1 �maxa2A Qt�et� (12)This results in a slightly altered and less e�cient on-line update algorithm than for eitherstandard Q-learning or MCQ-L (section 4).4 On-line LearningIn this section we present the temporal di�erence update algorithms required to apply theconnectionist learning methods at each time step, and hence lose the requirement to storeall state-action pairs until the end of each trial.The basic algorithm for applying TD-learning techniques to train neural networks canbe found in Sutton (1989). Each weight in the network maintains an eligibility trace,et = tXk=0(�)t�krwQt+k = rwQt + �et�1 (13)7



1. Reset all eligibilities, e0 = 02. t = 03. Select action, at4. If t > 0,wt = wt�1 + �(rt�1 + Qt � Qt�1)et�15. Calculate rwQt w.r.t. selected action at only.6. et = rwQt + �et�17. Perform action at, and receive payo� rt8. If trial has not ended, t t+ 1 and go to step 3.Figure 1: On-line connectionist update algorithm. The update in stage 5 is shown forModi�ed Connectionist Q-Learning.1. Reset all eligibilities, e0 = 0.2. t = 0.3. Select action, at.4. If t > 0,wt = wt�1 + � ([rt�1 + maxa2AQt � Qt�1]rwQt�1+[rt�1 + maxa2AQt �maxa2AQt�1]et�1)5. et = � [et�1 +rwQt�1]6. Calculate rwQt w.r.t. selected action at only.7. Perform action at, and receive payo� rt.8. If trial has not ended, t  t+ 1 and go to step 3.Figure 2: On-line connectionist update algorithm for Q(�).to keep track of the weighted sum of previous error gradients. Sutton presented thealgorithm for the general case where a multiple output network has di�erent errors ineach of its outputs, and hence there is the need to maintain one eligibility trace pernetwork output at each weight. However, in the Q-learning framework there is only asingle temporal di�erence error at each time step, which is used to update the Q-values ofall actions in A, and hence results in the fact that only a single eligibility is required foreach weight (see appendix A).The important point to note is that rwQt (the back-propagated output gradient) isonly calculated with respect to the output producing the Q-function value for the selectedaction at. Hence, if the Q-function is being represented by jAj separate single outputnetworks, then rwQt is zero for all weights in networks other than the one associatedwith action at, and so the eligibilities for the these networks are just updated accordingto, et = �et�1 (14)8



ROBOT
15deg

15deg

RANGE SENSORS

OBSTACLE GOAL

goald

Angle to goal

Figure 3: What the robot knows about its surroundingsThe full on-line algorithm is shown in Fig. 1. It involves back-propagating to computethe output gradients rwQt for the action chosen, and hence updating the weight eligibili-ties, before the action is actually performed. At the next time step, all of the weights areupdated according to the temporal di�erence error multiplied by their eligibilities. There-fore, the only storage requirements are for the neural network weights and eligibilities, andthe last Q-function value Qt and payo� rt.Q(�) updating is slightly di�erent, and translates into the on-line update sequenceshown in Fig. 2. Note the change in order of steps 6 and 7 which requires that the networkoutput gradients, rwQt, are stored between steps. The algorithm is therefore slightlymore computationally expensive than standard Q-learning and MCQ-L, and also requiresthe storage of the gradients rwQt as well as the network weights and eligibilities.5 The Robot ProblemIn order to test the algorithms discussed, a realistic mobile robot problem was considered.The robot must �nd its way to a goal position in a 2D environment whilst avoiding ob-stacles, but only receives payo�s at the end of each trial, when the outcome is known.The only information available to it during a trial are sensor readings, and information ithas learnt from previous trials. In order to ensure the control policy learnt is as generallyapplicable as possible, the robot is trained on a sequence of randomly generated environ-ments, with each used for only a single trial. E�ectively, this provided forced explorationof new environments and situations, and so provided a more robust robot control policythan could be achieved on a �xed environment.5.1 The Robot EnvironmentThe robot is simulated with �ve range �nding inputs which give it accurate distancemeasurements to obstructions, which are spaced across the robots forward arc from �30�9



to +30� at 15� intervals (see Fig. 3). It also always knows the distance and angle to thegoal relative to its current position and facing.The world the robot occupies is a square room, with randomly placed convex polygonalobstacles in it. The robot starts at a random position with a random orientation, and hasto reach the goal, which is also at a random position.The robot moves by selecting from a discrete set of actions (see section 5.2). It doesthis until an action results in a collision with an obstacle, arriving at the goal, or a time-out (the robot is allowed only a limited number of steps in which to reach the goal). Thetrial then ends and the robot receives a payo� based on its �nal position as described insection 5.2. The layout of the room is then randomised, and the robot starts a new trial.Consequently, the only information that the robot has as to the quality of its actions isthe �nal payo� it is given, and what it has learnt from previous trials.5.2 Experimental DetailsIn the following results, we compare the e�ects of applying the 3 di�erent update rules onthe robot learning task described in section 5.1;� Standard Q-learning (equation 5) with � = 0 whenever a non-greedy action is per-formed.� Q(�) (equation 12).� Modi�ed Q-learning (equation 9).In addition, we compare the e�ect of applying these updates using both backward replay(section 3.1) and the on-line algorithm (section 4).The simulated robot was trained with 6 actions available to it: turn left 15�, turn right15�, or keep the same heading, and either move forward a �xed distance d, or remain onthe same spot. This meant it had one redundant action | namely not moving or changingheading at all | that was never useful in achieving its objective.Instead of receiving payo�s rt at each time step, the robot only received a payo� atthe end of each trial. The �nal payo� received depended on how the trial concluded:Goal If the robot moved within a small �xed radius of the goal position, a payo� givenwas 1.Crash The robot received a payo� based on its distance from the goal when it crashedi.e. r�nal = 0:5 exp(�2dgoal=lroom)where lroom was the length of one wall of the square room.Safe If the trial timed-out (in the results presented in this section, this was after 200steps), the robot received the same payo� as for a crash, but with a +0.3 bonus fornot crashing.It should be noted that the payo� for crashing was chosen in a fairly arbitrary way simplyto give a higher payo� for ending up nearer to the goal, and a maximum payo� of only0.5.The discount factor,  was set to 0.99, which gives a higher weighting to actions thatlead to the goal in the fewest steps. 10



Training method Successful robots Updates taken Trial length(from 36) (millions) (steps)Standard 1 6.0 75.1Q(�) 12 3.8 51.6MCQ-L 14 3.0 53.3Table 1: Summary of successful robots (those averaging > 0:95 average payo� over thelast 10,000 training trials), from 36 di�erent � and � combinations trained using backwardreplay. Columns show number of updates made over the trials, and the average numberof steps required to �nd the goal by the end.The Q-function was represented by 6 neural networks, one for each available action.Each network had 26 inputs, 3 hidden nodes, and a single output, and used sigmoidalactivation functions of the form f(�) = 1=(1 + e��) which restricted the output of thenetworks to between 0 and 1. The 26 inputs were due to spreading the 7 real valued sensorstates across several input nodes each (3 for each of the 5 ranges, 5 for the distance togoal, and 6 for the angle to the goal), using a form of coarse coding. For example, a rangevalue was spread across 3 input nodes as if it were activating 3 single-input sigmoidalunits, each with a di�erent bias value. These were chosen so that as the range decreased,the inputs increased one after the other until at very close range they were all `on'. Thisrestricted the individual input values to a range of 0 to 1.In this work the simple Boltzmann probability distribution was used to provide prob-abilities for selecting actions, P (atjxt) = eQ(xt;at)=TPa2A eQ(xt;a)=T (15)where T adjusts the randomness of selection. This means that actions with higher Q-values have greater probability of being chosen, but other actions may be chosen instead.As the approximation of the Q-function improves, and the amount of exploration requiredgoes down, the value of T is reduced until the greedy action has almost probability 1 ofbeing selected at each step. In the results presented, T was reduced linearly between avalue of 0.05 and 0.01 over 20,000 trials, after which it was �xed at 0.01.5.3 ResultsThere are several heuristic parameters that must be set during training; the values usedfor the discount factor  and the exploration value T have been described above. Thesewere chosen after a small amount of experimentation, but no attempt was made to �ndoptimal values (e.g. a faster reduction in T can speed up convergence to a solution). Thisleaves the training rate � and the TD parameter �, which were found to have a signi�cante�ect on the ability of the neural networks to learn, and the quality of the solutions arrivedat. The graphs in Fig. 4 show the variation in average payo�s received by robots after beingtrained on 50,000 randomly generated rooms using Lin's backward replay algorithm. Thegraphs in Fig. 5 show the results when on-line updates (section 4) are used instead. Thecontour plots are constructed from results obtained from � = 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 and11
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Figure 4: Left: Contour plots showing how the �nal payo� after 50,000 trials varies foreach of the three update rules applied using backward replay for di�erent values of � and�. Right: Sample training curves taken for each update rule, corresponding to the valueof � and � marked by a + on each contour plot. The dotted line is the normalised averagenumber of steps taken in each trial (maximum trial length was 200 steps).12
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Figure 5: Left: Contour plots showing how the �nal payo� after 50,000 trials varies foreach of the three update rules applied on-line for di�erent values of � and �. Right: Sampletraining curves taken for each update rule, corresponding to the value of � and � markedby a + on each contour plot. The dotted line is the normalised average number of stepstaken in each trial (maximum trial length was 200 steps).13



Training method Successful robots Updates taken Trial length(from 36) (millions) (steps)Standard 18 5.1 57.8Q(�) 22 4.0 52.6MCQ-L 24 2.4 49.6Table 2: Summary of successful robots (those averaging > 0:95 average payo� over thelast 10,000 training trials), from 36 di�erent � and � combinations using on-line updates.Columns show number of updates made over the trials, and the average number of stepsrequired to �nd the goal by the end.
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Rewards versus UpdatesStandardQ(�)MCQ-LFigure 6: Left: The contour plot shows the payo� levels achieved by MCQ-L trained robotsafter 1.5 million updates. Right: The same three example graphs from Fig. 5, this timeplotted against updates rather than trials.� = 0.0, 0.25, 0.5, 0.75, 0.85, 1.0 for each of the three update rules used, and show the �nalpayo� averaged over the last 10,000 trials. The graphs on the right show typical learningcurves for robots that learn to reach the goal consistently. It is worth remembering thatthe exploration factor T has reached its minimum value of 0.01 at 20,000 trials.We see that the performance of the robots trained using backward replay is verysensitive to the choice of learning parameters � and �, with standard Q-learning onlyproducing one truly successful robot. The results for `successful' robots (those averaging> 0:95 payo� across the �nal 10,000 trials) are summarised in table 1, where it can beseen that MCQ-L and Q(�) perform far better than standard Q-learning.In contrast, the contour plots for on-line updating (Fig. 5) show far less sensitivity tothe choice of learning parameters. As can be seen from table 2, the number and quality ofthe successful robots is greatly increased, with the best results for MCQ-L trained robotsusing on-line updates.When comparing the performance of the on-line trained robots, the average payo�sreceived by the robots do not show the whole picture. The number of updates taken in50,000 trials varies considerably between the di�erent training methods. Fig. 6 shows thesame graphs as for Fig. 5, but with the x-axis scale in terms of updates rather than number14



Maximum trial Exploration Average Goal Crash Safelength (steps) value T payo� (timed out)100 none 0.984 962 5 230.01 0.981 960 9 21200 none 0.991 980 5 150.01 0.993 989 9 2500 none 0.991 980 5 150.01 0.993 990 9 1Table 3: MCQ-L trained robot tested on 1000 randomly generated rooms, with varyingmaximum trial lengths, and with and without exploration.
Figure 7: Left: A trained robot in a typical training environment. Right: The same robotin a novel environment consisting of circular objects in a room 2.5 times larger than it hasseen during training.of trials. As can be seen, the MCQ-L trained robots have converged to a solution in wellunder a million updates, compared to over 2 million for Q(�) and 4 million for standardQ-learning.To put this in perspective, the contour map in Fig. 6 represents the average payo�sreceived by the MCQ-L trained robots after 1.5 million applications of the update rule;the graphs for the other two methods are not shown as they are virtually blank i.e. nostandard Q-learning taught robots, and only 3 combinations of � and � for Q(�), have ledto a robot which averages a payo� greater than 0.95 within 1.5 million updates.5.4 Best Control PolicySo, what is the best robot controller that can be achieved with connectionist reinforcementmethods? Table 3 summarises the results for a robot trained using on-line MCQ-L witha training rate � of 2.0, and � equal to 0.25, on 50,000 randomly generated rooms. Withonly 100 steps available to reach the goal position, the robot fails 2% of the time due to15



time-outs. The number of time-outs drops to 1.5% if 200 step trials are allowed, with noreal improvement for allowing increased numbers of steps. Note that the system performsbetter with a small amount of exploration, even when fully trained. This is because thelimited sensory information available to the robot makes the problem non-Markovian, so insome situations it is not clear-cut which action to take. If the robot makes a deterministicdecision, which later leads it back to the same state, it will get caught in a loop. A littleexploration, however, can help the robot out of such situations by giving a probability ofperforming a di�erent action.Fig. 7 shows the trajectory taken by the robot in on a typical randomly generatedtraining environment, and in a novel `circle world' environment for which it received noadditional training, demonstrating the generality of its control policy.6 Discussion of Results6.1 Heuristic ParametersThe contour plots of Fig. 4 and 5 show how the choice of training rate � and TD-learning rate � can e�ect the subsequent success or failure of the system to converge to asuccessful solution. Some values simply result in very slow convergence times; others incomplete failure to learn a successful policy. This is because of the generalisation propertyof neural networks, which means that information can be `forgotten' as well as learnt. Ifthe parameters chosen during training are unsuitable, the robot will forget information asfast as it learns it, and so be unable to converge on a successful solution. This is why noproofs yet exist regarding the convergence of Q-learning or TD-algorithms in connectionistsystems.Consequently, it is desirable to use training methods that are less sensitive to the choiceof training parameters, to avoid having to perform repeated experiments to establish whichvalues work best. The results presented in the last section suggest that on-line updatesand the use of MCQ-L or Q(�), as opposed to standard Q-learning updates, help reducethis sensitivity.The value of  used was �xed throughout the experiments presented at 0.99. With nodiscounting, the robot can arrive at solutions that reap high �nal payo�s, but do not usee�cient trajectories (and hence the robot is often timed-out). To illustrate this, Fig. 8shows the training curves for two robots using MCQ-L with and without discounting. Ascan be seen, the undiscounted robot does considerably worse, especially in the averagenumber of steps taken per trial, despite the fact that there is only a 1% di�erence in theupdates being made at each time step.Finally, some tests have shown that the convergence of the neural networks relies heav-ily on the exploration used at each stage of learning. If it is too low early on then therobot cannot �nd improved policies, whilst if it is too high at a later stage then the ran-domness interferes with the �ne tuning required to have reliable policies that successfullylead to the goal. When using a Boltzmann distribution, therefore, the rate of convergenceis directly linked with the rate of reduction of T .Clearly therefore, the choice of values for the heuristic parameters used in connectionistQ-learning is critical in order to guarantee successful convergence. Thrun and Schwartz(1993) provided limits for  based on the trial length and number of actions available toa system, assuming one-step Q-learning is being used, but more general results are as yetunavailable. 16
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Figure 8: Graphs showing the e�ect of the discount factor . Both robots were trainedusing MCQ-L with � = 1.0 and � = 0.5. The dotted lines show the normalised number ofsteps per trial.6.2 On-line v Backward ReplayThe results of the tests for using on-line updating compared to backward replay are inter-esting; on-line updating consistently performs much more successfully over a wider rangeof training parameters for all 3 update rules. This is quite surprising, as backward replayhas the bene�t of having all state-action pairs stored for the trial, and being updatedusing supervised learning based on the �nal reward. However, it would seem that on-linelearning has the advantage that the eligibilities act in a similar way to a momentum term,4providing updates that reduce the error to zero, instead of converging asymptotically inproportion to the mean squared error. Providing a momentum term for the updates per-formed during backward replay could help achieve the same e�ect (as it does in normalsupervised learning tasks), but also introduces another heuristic parameter that wouldneed setting during training.6.3 Comparison of Update RulesThe results show the relative performance of the 3 di�erent forms of update rule. It isimportant to remember that all 3 of these update rules are exactly equivalent when purelygreedy actions are taken during a trial. The di�erence in the updates occurs only whenexploratory actions are taken.Using standard Q-learning with � set to zero for non-policy actions, weight eligibilitiesare only allowed to build up when the robot takes a sequence of greedy policy actions;they are zeroed when an exploratory action is taken. This stops the results of exploratoryactions from being `seen' by earlier actions, but also mean that states see a continual over-estimation of the payo�s available, as they are always trained on the maximum predictedQ-value at each step (Thrun and Schwartz 1993). However, in a connectionist system,generalisation occurs, which means that the e�ects of bad exploratory actions will be seenby nearby states even if � is set to zero to try to prevent this, so this is of limited value,and simply results in the information learnt by good exploratory actions being used less4Or an integral term in a PID controller. 17



e�ectively. The overall e�ect is that standard Q-learning converges less quickly, and overa smaller range of training parameters (especially noticable with backward replay) thanMCQ-L or Q(�) type updates.Q(�) is in e�ect a combination of standard Q-learning and MCQ-L. However, updatingthe last greedy prediction based on the next prediction, despite the fact that the corre-sponding greedy action was not performed, is a confusing concept, but appears to workwell in practice, although it is not clear what the predictions made by intermediate Q-functions actually represent. The rule is slightly harder to implement than either standardQ-learning or MCQ-L, and in these experiments appears to o�er no advantage over usingthe MCQ-L type of updates.With Modi�ed Connectionist Q-learning, the results of exploratory actions are seenby earlier states, which therefore learn the expected payo� available in each state giventhe current level of exploration. E�ectively, the risk of a particular course of actions isbuilt in, as if slight exploration can lead to disaster, then the predicted payo�s for thatsequence of actions will be correspondingly lower, unlike for standard Q-learning, whichaims only to learn the deterministic greedy policy.7 ConclusionsIn this report, we have presented methods for on-line updating using neural networksfor reinforcement learning. These methods have been demonstrated on a realistic mobilerobot problem, and have shown that on-line learning is in fact a more e�cient methodof performing updates than backward replay methods (Lin 1992), in terms both of stor-age requirements and sensitivity to training parameters. On-line learning also has theadvantage that it could be used in continuously operating systems where no end of trialconditions occur.In addition to this, several di�erent update rules have been considered, including a newform (MCQ-L) based more strongly on TD-learning than the normal Q-learning equation.This has been shown to converge to solutions in considerably fewer updates than standardQ-learning or the Q(�) update rule, and to be more robust to the choice of trainingparameters. In comparison with Q(�), MCQ-L's performance improvement is not so clearcut, but still has the advantage of a computationally simpler update rule requiring lessstorage, as well as a clearly de�ned target Q-function for any given policy.Of course, the results as a comparison of di�erent Q-learning update rules are far fromconclusive, and further comparative studies need to be made. However, currently work isbeing carried out to compare the performance of the di�erent update rules on a discretestate-space problem, where preliminary results support the fact that MCQ-L and Q(�)updates lead to faster convergence than standard Q-learning (and far faster convergencethan simple one-step Q-learning).AcknowledgementsThanks must go to Chen Tham and Rich Sutton for their helpful comments on this work.This work is funded by a grant from the Science and Engineering Research Council.18



A Calculating Eligibility TracesFor completeness, the calculation of rwQt and hence the eligibility traces is given here.We de�ne a neural network as being a collection of interconnected units arranged inlayers, which we label i; j; k::: from the output layer to the input layer. A weight on aconnection from layer i to j is labelled wij . Each unit performs the following function,oi = f(�i) (16)�i = Xj wijoj (17)where oi is the output from layer i and f(:) is a sigmoid function.The output gradient rwQt is de�ned w.r.t. the output layer weights as,@oi@wij = f 0(�i)oj (18)where f 0(:) is the �rst di�erential of the sigmoid function. Therefore, for the �rst hiddenlayer weights, the gradient is simply,@oi@wjk = f 0(�i)wijf 0(�j)ok (19)These values are added to the current eligibilities. Generally, there would be one outputgradient for each output i, and hence i eligibilities would be required for each weight,so that when each output's temporal di�erence error, Ei, arrived, the weights could beupdated according to, �wjk  Xi Eieijk (20)where eijk is the eligibility on weight wjk which corresponds to output i. However, inQ-learning, there is only a single temporal di�erence error which is calculated w.r.t. theoutput which produced the current prediction Qt. Hence only one output gradient iscalculated at each time step, and only one eligibility is required per weight.ReferencesAlbus, J. S. (1981). Brains, Behaviour and Robotics, BYTE Books, McGraw-Hill, chap-ter 6, pp. 139{179.Dayan, P. (1992). The convergence of TD(�) for general �, Machine Learning 8: 341{362.Lin, L. (1992). Self-improving reactive agents based on reinforcement learning, planningand teaching, Machine Learning 8: 293{321.Lin, L. (1993). Reinforcement Learning for Robots Using Neural Networks, PhD thesis,Carnegie Mellon University, Pittsburgh, Pennsylvania.Peng, J. and Williams, R. J. (1994). Incremental multi-step Q-learning, in W. Cohenand H. Hirsh (eds), Machine Learning: Proceedings of the Eleventh InternationalConference (ML94), Morgan Kaufmann, New Brunswick, NJ, USA, pp. 226{232.19
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